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Abstract
The complexity of a system, in general, makes it difficult to determine some or
almost all matrix elements of its operators. The lack of accuracy acts as a source
of randomness for the matrix elements which are also subjected to an external
potential due to existing system conditions. The fluctuation of accuracy due to
varying system conditions leads to a diffusion of the matrix elements. We show
that, for single-well potentials, the diffusion can be described by a common
mathematical formulation where system information enters through a single
parameter. This further leads to a characterization of physical properties by an
infinite range of single-parametric universality classes.

PACS numbers: 05.45.+b, 03.65.Sq, 05.40.+j

1. Introduction

For systems that can be described mathematically, physical information can be derived, in
principle, from detailed knowledge of the operators that govern their evolution. Physical
systems can however be complex in nature and it is not always possible to determine the
operator exactly or, even if they are known, to solve the equations they determine. This paper
aims to model the statistical behaviour of those complex systems where a matrix representation
of the operators is meaningful.

The complexity may appear in various forms, for example, as noise due to many-body
interactions or an external disorder potential, as chaos due to scattering of a particle from
boundaries (e.g. clean quantum dots) and as coherence patterns emerging out of randomness
(see, for example, [1] for various definitions of complexity). For example, consider the
Hamiltonian of a many-body system. If the local interactions are complicated in a specific
part of the system, the evaluation of the corresponding matrix elements becomes technically
difficult. These elements can then be determined only within a certain degree of accuracy and
can best be described by a probability density. However, the system may also contain parts
where interactions are simple and the related matrix elements can exactly be calculated. The
operator then turns out to be a matrix with both random and non-random elements; we refer
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such a matrix as a generalized random matrix. Similar matrices would also appear for systems
containing a combination of chaotic as well as ordered components. The properties of such
systems can then be modelled by an ensemble of generalized random matrices.

In recent years, due to an increasing degree of complexity in systems of industrial and
technological interests, the mathematical models such as random matrix ensembles have
become necessary. In fact, a particular class of these ensembles, known as stationary
ensembles [2], has been successfully applied for modelling of the operators for a wide range
of complex systems, e.g. nuclei, atoms, molecules, disordered and chaotic systems, quantum
chromodynamics, elastomechanics, electrodynamics (see reviews [2–11] and references
therein for details), mathematical areas such as Riemann zeta function, enumeration problems
in geometry and fluctuations in random permutations [12], biological systems [13], stock
markets [14], atmospheric sciences [15], complex networks [16], etc1. The stationary random
matrix ensembles are basis-invariant ensembles, characterized by a similar and independent
distribution of almost all elements [2]. This restricts their applicability only to the generators
with wavefunctions extended in the entire system or with a coherent scattering of waves.
However, the matrix elements distribution can significantly be affected by various system
conditions, e.g. missing interactions among some of the sub-systems, a variation in their
degree or nature, symmetry and boundary conditions, dimensionality, disorder, etc [21].
These conditions may result in different strengths of the elements, correlations between them
and localized waves; the corresponding ensembles are then basis-non-invariant.

The presence of local interactions and wave-localization phenomena is quite generic to a
wide range of complex systems. The statistical analysis of their physical properties requires
therefore a search for new mathematical tools. The present study is an attempt in this direction.
The basic idea here is to take into account the inaccuracy in the matrix representation of an
operator of a complex system. The fluctuation of accuracy with changing system conditions
results in a change of distribution parameters of various matrix elements. This leads to a
seemingly multi-parametric diffusion of the ensemble density. However, as shown here, the
diffusion is essentially governed by a single parameter only. The information can then be
utilized to study the fluctuations of the physical properties due to varying system conditions
and express the results in a common mathematical form for a wide range of complex systems.

The statistical behaviour of complex systems and the possibility of a common
mathematical formulation were recently studied by considering their maximum entropy models
[18, 19]. The latter is based on the formulation of the ensemble density by maximizing the
information entropy under constraints imposed on the system [17]. The ensemble density is
then utilized to extract the distribution of eigenvalues and eigenfunctions and desired physical
information. The maximum entropy approach indicated the possibility of a classification of the
complex systems into various universality classes (based on the behaviour of their statistical
measures and characterized by the complexity parameter [18, 19]). These results were also
verified numerically for certain cases [20, 21, 25]. However, the complexity parameter
formulation within this approach gives rise to some queries which required a more intuitive
physical reasoning for their resolution. This motivates us to consider the accuracy-based
approach which not only resolves the queries but also helps in the generalization of the single-
parametric formulation to a wider range of complex systems (those with system conditions
subjecting matrix elements to a potential with a single minima only).

The paper is organized as follows. Section 2 describes the diffusive dynamics for the
matrix elements of a Hermitian operator subjected to an external potential of type e−V (H)

1 Many new applications and several other references of random matrix theory can be found by searching the
cond-mat archives.
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as well as random noise originated in the complexity of the system. (We have considered
here the real-symmetric case only, however the results are valid for the complex Hermitian
and real-quaternion cases too.) The comparison of this approach with the maximum entropy
approach is discussed in section 3. This is followed by section 4 describing the derivation
of the statistical measures of the eigenvalues and eigenfunctions using standard perturbation
theory. Note, for generic potentials, the derivation of the measures by a direct integration of
the evolution equation (the method used for Gaussian cases in [20]) is technically difficult.
We conclude in section 5 with a summary of our main results.

2. Accuracy-driven diffusion of matrix elements

Consider, as an example, a Hermitian operator H of a complex system with time-reversal
symmetry and integer angular momentum. It is possible to choose a generic basis, say |φk〉
(k = 1 → N), preserving the time-reversal symmetry for the matrix representation of H; the
matrix turns out to be real symmetric in this basis with its elements Hkl = 〈φk|Hφl〉. For
notational simplification, let us denote them by Hµ, where µ ≡ {kl; s} is a single index which
can take a value from 1 to M (M = N(βN − β + 2)/2, the number of independent matrix
elements). Here, β is the number of components of Hµ; thus, β = 1 for the real-symmetric
case.

Due to the presence of complicated interactions in the system, it is technically difficult to
evaluate some/all elements of the operator matrix in a generic basis. Consequently, the matrix
elements can be determined only within a certain degree of accuracy which, being sensitive to
local system conditions, varies from element to element. The accuracy fluctuates rapidly as the
system conditions change, with different ‘time-scale’ of fluctuations for each matrix element.
The variation of an element Hµ with changing system conditions can therefore be mimicked
by a particle undergoing Brownian dynamics due to rapidly fluctuating forces in addition to an
external force (due to existing system conditions). The matrix elements of a physical system
also have a natural tendency to oppose the cause for their change. The dynamics is therefore
subjected to a local frictional force too.

Consider the ‘particle’ Hµ in equilibrium under the external force V (Hµ) due to existing
system conditions. The equation of motion for Hµ due to changing system conditions can be
written as

d2Hµ

dt2
µ

= −f
dHµ

dtµ
+ V (Hµ) + A(tµ), (1)

where f is the friction coefficient and A(tµ) is a rapidly fluctuating force in ‘time’ tµ (a pseudo
time only, a measure of the scale for accuracy fluctuations) with the following usual properties:

〈A(tµ1)A(tµ2) · · · A(tµ(2n+1))〉 = 0, (2)

〈A(tµ1)A(tµ2) · · · A(tµ(2n))〉 =
∑
pairs

〈A(tµi)A(tµj )〉〈A(tµk)A(tµl)〉 · · · , (3)

〈A(tµi)A(tµj )〉 = (2/f )δ(tµi − tµj ), (4)

where 〈·〉 refers to the ensemble average, tµj refers to the j th step in the time-scale tµ and
the summation in equation (3) extends over all distinct ways in which the 2n indices can be
divided into n pairs. Further, for a clear exposition of the ideas, we consider here the potential
V (Hµ) as a function of Hµ with a single minima.

The Langevin equation can now be integrated: let Hµ be the position of the particle at
time tµ which changes to position Hµ + δHµ at a later time tµ + δtµ (here, tµ is chosen to be

3
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long enough for the effects of initial velocity to become negligible). Due to the presence of
rapidly fluctuating forces, the variation δHµ in the position of the particle will behave like a
random variable. Using equations (1)–(4) and keeping terms only of first order in δtµ, one
gets

f 〈δHµ〉 = −V (Hµ)δtµ, f 〈(δHµ)2〉 = (gµ/β)δtµ, (5)

with gµ ≡ gkl = 1 + δkl . Due to random variations in particle position with changing system
conditions, it is appropriate to consider a time-dependent probability density ρµ(Hµ, tµ) that
the particle will be at the position Hµ at time tµ. Assuming a Markovian process (that is the
independence of future evolution from past states, dependence only on the present state), one
can write

ρµ(Hµ; tµ + δtµ) =
∫

ρµ(Hµ − δHµ; tµ)ρcond(Hµ − δHµ; δHµ; δtµ) dδHµ, (6)

where ρcond is the conditional probability that the position of the particle changes from
Hµ − δHµ to Hµ in a time interval δtµ. Expanding both sides of equation (6) in a power series
of δHµ and δtµ and subsequently using equation (5), we get (in the limit δt → 0)

f
∂ρµ

∂tµ
= ∂

∂Hµ

[
gµ

2β

∂

∂Hµ

+ V (Hµ)

]
ρµ. (7)

Equation (7) describes the evolution of Hµ with respect to the time-scale tµ which in
turn depends on the time-scale for accuracy fluctuations (and therefore system conditions)
surrounding Hµ. For systems where the coupling of any two basis states through the generator
H is independent of the coupling between other states (i.e. all matrix elements are independent
of each other), the fluctuations in the accuracy of each matrix element are independent too.
Each element can therefore be assumed to be subjected to a random force fluctuating at a
time-scale independent of others (that is, all tµ independent of each other). This gives us M
equations, of type (7), for the independent evolutions of M elements Hµ.

The joint probability distribution ρ({Hµ}; {tµ}) of all matrix elements can now be defined
as

ρ({Hµ}; {tµ}) =
∏
µ

ρµ(Hµ; tµ) (8)

which along with equation (7) leads to the equation for multi-parametric evolution of ρ:

f
∑

µ

∂ρ

∂tµ
=

∑
µ

∂

∂Hµ

[
gµ

2β

∂

∂Hµ

+ V (Hµ)

]
ρ. (9)

For a system undergoing evolution as a whole unit, it is natural to seek a common scale,
say τ , at which all its constituents, i.e. matrix elements, vary simultaneously. Let us therefore
consider the evolution of ρ with respect to τ . Assuming again a Markovian process, we have

ρ({Hµ}; τ + δτ) =
∫

ρ({Hµ} − δ{Hµ}; τ)ρcond({Hµ} − δ{Hµ}; δ{Hµ}; δτ) DδH, (10)

where DδH ≡ ∏
µ dδHµ. Expanding both sides of equation (10) in a power series of δHµ

and δτ , we get (in the limit δt → 0)

∂ρ

∂τ
δτ =

∑
µ

∂

∂Hµ

[
∂

∂Hµ

〈(δHµ)2〉
2

− 〈δHµ〉
]

ρ. (11)

As both equations (11) and (9) describe the evolution of the probability density of H, they
should be analogous. A comparison of the equations then gives the conditions

∂ρ

∂τ
δτ =

∑
µ

∂ρ

∂tµ
δtµ (12)
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and

f 〈δHµ〉 = −V (Hµ)δτ, f 〈(δHµ)2〉 = (gµ/β)δτ. (13)

The two conditions imply

δτ = δt1 = δt2 = · · · = δtM̃ . (14)

This is satisfied if τ is defined as τ =
∑N

µ=1 aµtµ∑
µ aµ

, with aµ as arbitrary constants. However,

physical reasoning (based on no preference by random forces to any particular component of
the system) suggests us to choose aj equal.

The solution of equation (11) for an arbitrary initial condition, say H0 at τ = τ0 can be
given as

ρ(H, τ |H0, τ0) ∝ exp[−(α/2β) Tr(H − ηH0)
2], (15)

with α = (1 − η2)−1 and η = e−(τ−τ0)/f . The probability density of H can now be extracted
by integrating over an ensemble of initial conditions. Although equations (11) and (15) are
derived for the case β = 1, it is easy to show, following essentially the same steps, their
validity for the complex Hermitian case β = 2 and the real-quaternion case β = 4.

Note the accuracy scales τµ depend on local system conditions which can vary from
system to system. However, as equations (11) and (15) indicate, ρ(H) is insensitive to the
details of the local system conditions; it depends only on their average behaviour described by
τ besides global constraints, e.g. V (H) and symmetry conditions (note V (H) has no explicit
dependence on τµ). Thus, analogous to their maximum entropy models, the accuracy-based
approach indicates a single-parametric dependence of the density ρ(H) for simple harmonic
confinement V (H) = H . It further generalizes the formulation to the systems with conditions
giving rise to a generic single-well (single-minima) potential. The approach can, in principle,
be extended to the multi-well potentials too, however it requires a modification of the technical
details. We intend to pursue these cases in the near future.

It is important to note that the form of equation (11) for the case V (H) = H is analogous
to Dyson’s Brownian model [2, 22]. The latter deals with the case of a stationary ensemble
subjected to a random perturbation. However, the Brownian dynamics of matrix elements in
the accuracy model is different from Dyson’s case; there are two main differences:

(1) In Dyson’s model, the randomness caused due to a perturbation is the same for almost
all the matrix elements. In the accuracy model, the origin of randomness is the lack of
accuracy which is sensitive to local conditions. Different matrix elements may therefore
be subjected to different randomness.

(2) In Dyson’s model, the evolution occurs due to a variation in the perturbation strength and
is single parametric. In the accuracy model, the evolution is brought by the fluctuating
accuracy due to varying system conditions. As a consequence, we need to consider a
multi-parametric evolution of probability density (unlike the single-parametric evolution
in Dyson’s case). However, as equation (11) indicates, the multi-parametric evolution can
be reduced to a single-parametric evolution.

3. A comparison of the accuracy-based approach and the maximum entropy approach

The objective of this section is to indicate the analogy of the results obtained by the accuracy
model and maximum entropy models of complex systems notwithstanding their seemingly
different origins. For a clear comparison, we briefly review the maximum entropy approach.
This approach is based on the representation of a complex system by an ensemble of matrices;
here the probability density of the matrix elements is formulated by maximizing the information
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entropy under known system constraints (see [17] for details). However, the density in the
accuracy-based approach is obtained as a non-stationary state of a diffusion process. This can
further be clarified by an example. The accuracy model leads to a Gaussian density ρ(H) if
V (H) = H and the initial density is Gaussian too (see equation (15)). However, the maximum
entropy theory leads to a Gaussian density if the available information about matrix elements
is limited to their average behaviour and variances only:

ρ(H, ν, b) =
∏
µ

ρµ(Hµ, vµ, bµ) = C exp

[
−

∑
µ

(1/2vµ)(Hµ − bµ)2

]
, (16)

with C as a normalization constant, v, b as the matrices of variances vµ and mean bµ,
respectively, and the symbol

∑
µ implying a summation over the independent matrix elements

only.
The emergence of the single-parametric formulation in the maximum entropy approach

can briefly be explained as follows. The Gaussian nature of ρµ (see equation (16)) leads to a
relation among its derivatives with respect to Hµ, vµ, bµ:

Tµρ = Lµρ, (17)

where

Tµ =
[
(2/g̃µ)xµ

∂ρ

∂vµ

− bµ

∂ρ

∂bµ

]
, (18)

Lµ = ∂

∂Hµ

[
gµ

2β

∂

∂Hµ

+ Hµ

]
ρ, (19)

with xµ ≡ 1 − g̃µvµ, where g̃µ ≡ g̃kl = 2 − δkl and gµ is the same as in equation (5). A
particular combination of the parametric derivatives T = ∑

µ Tµ leads to a diffusion equation
Tρ = Lρ (with L = ∑

µ Lµ). The single-parametric formulation of the diffusion then follows
by showing T = ∂

∂Y
, with Y as the complexity parameter [18, 19].

Equation (17) describes the evolution of ρ when all other matrix elements except Hµ are
held fixed. It is therefore equivalent to equation (7) with V (Hµ) = Hµ and ρµ replaced by ρ

(following equation (8)). This implies

f
∂ρ

∂tµ
= (2/g̃µ)xµ

∂ρ

∂vµ

− bµ

∂ρ

∂bµ

. (20)

The scale tµ can then be expressed in terms of the distribution parameters:

vµ = (1 − e2tµ/f )/g̃µ + c1µ, bµ = etµ/f + c2µ, (21)

with c1µ and c2µ as constants specific to each vµ and bµ, respectively. This indicates the
equivalence of τ = ∑

µ tµ (the average scale for accuracy fluctuation) to the complexity
parameter in the maximum entropy model (an average distribution parameter of the ensemble)
[18, 19]. This further implies that the confinement by a simple harmonic force in the accuracy
model is equivalent to the maximum entropy modelling of a system with known averages
and variances of the matrix elements. Similarly, a general confining potential V (H) in the
accuracy model can be shown to be equivalent to a maximum entropy ensemble derived under
the constraints 〈U(H)〉 = constant, where U(H) = ∫

V (H) dH .
The equivalence of the accuracy approach to the maximum entropy approach can be used

to clarify some of the points related to the latter. For example, in the maximum entropy
approach, a particular combination Tρ of the parametric derivatives leads to the Brownian-
type diffusion; the reason to consider such a combination is not so obvious. However, the
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accuracy approach clearly explains the reason: the combination is required to study the
evolution of the system as a whole unit. Further, in the maximum entropy approach, the multi-
parametric diffusion governed by the parameters Yj , j = 1, 2, . . . , N , is reduced to a single-
parametric formulation by showing that all Y’s except Y1 are constants of evolution. However,
in the accuracy-based approach, the single parameter existence follows from the necessity of
the simultaneity of the dynamics of various matrix elements. As both approaches represent
the same dynamics, this reconfirms the lack of any role played by the parameters Y2, . . . , YM

in the diffusion of matrix elements.

4. Diffusion of eigenvalues and eigenfunctions

The eigenvalue equation of a N ×N Hermitian matrix H is given by HU = U †E with E as the
N ×N diagonal matrix of eigenvalues, Emn = enδmn, and U as the N ×N eigenvector matrix,
unitary in nature: UT U = 1 [2]. As described in [20], the statistics of the eigenvalues and/or
eigenfunctions of H can be obtained from equation (17) by integrating over the eigenfunctions
and eigenvalues, respectively; the results in [20], however, are valid only for V (H) as a simple
harmonic force. Here we apply second-order standard perturbation theory [26] to derive
results for a more general form of V (H); here again H is taken to be a real-symmetric matrix
for simplification.

4.1. Eigenvalue statistics

A small change δτ in the parameter τ changes ρ(H) and its eigenvalue statistics. By
considering the matrix H + δH in the diagonal representation of the matrix H, the change δen

in the eigenvalues can be given as

δen = δHnn +
∑
m�=n

|δHmn|2
en − em

+ o((δHmn)
3), (22)

where Hmn = enδmn at the value τ of the parameter. This further gives (taking f = I for
simplification)

〈δen〉 = 〈δHnn〉 +
N∑

m=1,m�=n

〈|δHmn|2〉
en − em

(23)

=
⎡
⎣−V (en) +

N∑
m=1,m�=n

1

en − em

⎤
⎦ δτ. (24)

Here, equation (24) has been obtained from equation (22) by using equation (13). Similarly,
up to the first order of δτ ,

〈δenδem〉 = 〈δHnnδHmm〉 = (2/β)δnmδτ. (25)

The information about moments of the eigenvalues en can now be used to obtain their
evolution equation. The theory of Brownian motion [27] informs us that the joint probability
distribution P({en}) for the eigenvalues en evolves with the increasing τ according to the
Fokker–Planck equation,

βf
∂P

∂τ
= LEP, (26)

7
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LE =
N∑

n=1

∂

∂en

⎡
⎣ ∂

∂en

+
N∑

m=1,m�=n

β

em − en

+ βV (en)

⎤
⎦ P. (27)

This equation describes the evolution of the eigenvalues of a complex system modelled by the
ensemble ρ(H) due to changing system conditions.

As in the case of the maximum entropy approach [18, 21, 23], the eigenvalue correlations
for the case V (e) = e can be obtained by using the analogy with Dyson’s Brownian
ensembles [2, 22]. For a general V (e), the correlations can be analysed by mapping
equation (26) to the Calogero–Sutherland Hamiltonian [23]. This can be achieved by using
the transformation 
 = P/|QN |1/2 in equation (26) reducing it in a form ∂


∂τ
= −Ĥ
, with

QN = ∏
m�=n(em − en)

β exp[−β
∑

n U(en)] and U(e) = ∫
deV (e). The ’Hamiltonian’ Ĥ

turns out to be the Calogero–Sutherland Hamiltonian in one dimension [23]:

Ĥ = −
∑

i

∂2

∂e2
i

+
∑

i,j ;i<j

β(2 − β)

(ei − ej )2
+ β

∑
i

V (ei). (28)

Similar to the case V (e) = e (see [18, 23] for details), the ‘state’ ψ or P({e}, τ |H0)

for a generic V (e) can be expressed as a sum over the eigenvalues and eigenfunctions of
Ĥ . The integration of the sum over the initial ensemble H0 would then lead to the joint
probability distribution P({e}, τ ) and thereby density correlations Rn for an unfolded spectrum
(eigenvalues rescaled in the units of local spectral density). Note that the choice of the initial
eigenvalue distribution at τ0 depends on the global system constraints.

As equations (27) and (28) indicate, the confining potential V (e) does not affect the
short-range level correlations. The latter are governed only by the complexity parameter τ

and underlying exact symmetry conditions. However, the long-range level correlations are
sensitive to two factors: (i) the complexity parameter (i.e. the average accuracy fluctuation scale
τ , or equivalently, the average distribution parameter) and (ii) the global system constraints, i.e.
details of the external force F(H) and the symmetry conditions. Thus, the systems subjected
to effectively similar physical constraints will show analogous long-range correlations (after
spectral unfolding) if their complexity parameters are equal. Here the term ‘effectively similar
physical constraints’ implies the similar symmetry conditions as well as the same mathematical
form of the external potential although it may originate from different physical conditions.
For example, a harmonic confinement of the matrix elements which also corresponds to their
Gaussian distribution can be a physical characteristic of many systems related to different
areas of physics.

4.2. Eigenfunction statistics

The evolution equation for the probability density of various eigenfunction components can
similarly be obtained. Here again we consider the case of a real-symmetric operator for
simplification. The eigenvector matrix U ≡ O is then orthogonal: OT O = 1 [2]. Using
standard perturbation theory for Hermitian operators, the second-order change in the j th
component Ojn of an eigenfunction On due to a small change δτ can be described as

δOjn =
∑
m�=n

|δHmn|
en − em

Ojm +
N∑

m,m′ �=n

|δHmn||δHm′n|
(en − em)(en − em′)

Ojm

−
N∑

m�=n

|δHmn||δHnn|
(en − em)2

Ojm − 1

2
Ojn

N∑
m�=n

|δHmn|2
(en − em)2

. (29)
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As equation (13) indicates, the matrix elements of H are uncorrelated. Furthermore, at
τ,Hmn = enδmn (due to H + δH being considered in the diagonal representation of H)
which gives, following from equation (15), δHmn = −V (Hmn)δτ = −V (enδmn)δτ . Thus,
δHmn = V (0)δτ = 0 for m �= n and V (0) = 0. The ensemble-averaged Ojn then has a
nonzero contribution only from the last term of equation (29) (see equation (5)):

〈δOjn〉 = −1

2

N∑
m=1,m�=n

Ojn

(en − em)2
δτ. (30)

Note for cases where V (Hmn) is nonzero for m �= n, the first term contributes too. Further, for
cases where V (0) �= 0 or matrix elements are correlated, the other terms may also contribute.

The second moment of the eigenvector components has a contribution only from the first
term in equation (29) (up to first order in δτ )

〈δOjnδOkn〉 =
N∑

m,m′ �=n

〈|δHmn||δHm′n|〉
(en − em)(En − Em′)

OjmOkm′ = (2β)

N∑
m=1,m�=n

OjmOkm

(en − em)2
δτ. (31)

As the moments for eigenfunction components depend on eigenvalues too, we can first
write the diffusion equation for the joint probability density Pef,ev(e1, e2, . . . , en;Y ) of all the
components of an eigenfunction and all eigenvalues:

∂Pef,ev

∂τ
= (LO + LE)Pef,ev, (32)

where LO and LE refer to two parts of the Fokker–Planck operator corresponding to the
eigenvalues and eigenfunction components. Here, LE is given by equation (27) and

LO =
∑

j

∂

∂Ojn

[
1/2

∂

∂Ojn

〈(δOjn)
2〉 − 〈δOjn〉

]
. (33)

A substitution of the moments (equations (30) and (31)) in equation (33) followed by an
integration of equation (32) over all eigenvalues except en will then lead to the evolution
equation for the joint probability density Pn(On, en;Y ); the equation turns out to be the same
as equation (18) given in [20] and can further be used to derive various correlation measures
for an eigenfunction [20].

Equation (29) can also be used to derive the joint probability distribution of the components
of different eigenfunctions; again, for the cases with V (0) = 0, the results, e.g. the single-
parametric formulation in infinite size limit, turn out to be the same as given in [20].

5. Conclusion

In this paper, we have studied the dynamics of the matrix elements of an Hermitian operator
of a complex system subjected to a single-well potential. The dynamics is diffusive due
to random forces originating from accuracy fluctuations due to varying system conditions.
The information is then applied to explore the statistical behaviour of the eigenvalues
and eigenfunctions. Our analysis suggests a possible classification of complex systems
in an infinite range of universality classes characterized just by the complexity parameter
and the nature of global physical constraints. The constraints, e.g. unitary/anti-unitary
symmetries, and confining potential on matrix elements seem to divide complex systems
in various universality classes. Each such class can further be divided into many sub-classes
characterized by their complexity parameters. Note the ‘constraint’ universality class of a
system refers to the broad nature of its complexity (the finer details seem to be irrelevant).
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However, its sub-universality class depends on the degree of complexity only (measured
by the complexity parameter). This can be explained by the following examples. The
standard Gaussian orthogonal ensemble (GOE), the power-law ensemble of real matrices,
and the time-reversal Anderson ensemble belong to the same ‘constraints’ universality class
in the above classification [20], although their complexity parameters, in general, are not
equal (approaching infinity for GOE and finite in the other two cases). However, for the
system parameters leading to the same finite value of the complexity parameter, the Anderson
ensemble and power-law ensemble show the same statistics [20].

The accuracy approach described here is applicable, in its present form, only to the cases
with independent matrix elements subjected to a single-well potential. The frequent occurrence
of correlated elements or multi-well potentials among complex systems makes their analysis
desirable too. A generalization to these cases requires a more involved technical analysis.
However, our intuition suggests the possibility of a similar classification for these cases
too. For example, for the multi-well potentials, the accuracy scales and their fluctuations are
sensitive to local system details and can therefore vary from one branch to another. This would
lead to a variation of diffusion scales (the average accuracy scale or complexity parameter)
in different branches. Thus the statistical properties within a single branch would belong to a
universality class characterized by the local complexity parameter. However, the universality
classes in different branches need not be analogous. The above suggestion seems to be in
accord with the already known results for invariant ensembles with multi-well potentials [28].
This encourages us to pursue a detailed analysis and extension to non-invariant ensembles of
such cases in the near future.

For the correlated cases, the accuracy scales for various elements are no longer
independent. However, a recent study of the maximum entropy models of a few correlated
cases indicates the existence of the universality classes among them too [19]. It is desirable to
explore the possibility of its generalization to a wider range of such cases.
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